Как рассчитать отклонение

Содержание

Как правильно рассчитать отклонение, и для чего это нужно

Как рассчитать отклонение

Для эффективного анализа данных и для нахождения проблемных участков в производстве необходимо находить отклонения в показателях. Отклонения бывают нескольких видов и отличаются как единицами измерения, так и способом получения, среди них можно выделить:

  • Стандартное отклонение;
  • Абсолютное отклонение;
  • Относительное отклонение;
  • Селективное отклонение;
  • Кумулятивное отклонение;
  • Отклонение во временном разрезе.

Как рассчитать отклонение в каждом случае, вы узнаете из этой статьи.

Как определить динамику изменения значений при отклонении

Нередко для того, чтобы понять насколько плавно изменяется тот или иной показатель на нескольких отрезках времени, простого среднего значения, сравниваемого с наименьшим или наибольшим числом из ряда – недостаточно. В таких случаях для более глубоко анализа применяется нахождение стандартного отклонения, показывающего более четко динамику изменения значений.

Пример:

Даны показатели затрат на средства уборки для двух заведений: 10, 21, 49, 15, 59 и 31, 29, 34, 27, 32, где средним значением будет 30,8 и 30,6.

Показатели в среднем приблизительно одинаковы, однако даже визуально видно, что значения в одном заведении изменяются не равномерно, что их контроль производится от случая к случаю. Но для более полного представления необходимо найти стандартное отклонение. Оно будет равно: 19,51 и 2,4.

[attention type=red]
При среднем значении в первом заведении 30,8 показатели отклоняются от него более чем существенно – 21,8, соответственно у вас есть подтверждение небрежного отношения к работе.
[/attention]

Рассчитывается оно следующим образом:

  1. Необходимо рассчитать среднее значение для проверяемого ряда данных. (10+21+49+15+59)/5=30,8
  2. Найти разницу между каждым показателем и средним значением. 10-30,8=-20,8; 21-30,8=9,8; 49-30,8=18,2; 15-30,8=15,8; 59-30,8=28,2
  3. Возвести каждое значение разницы в квадрат. -20,82=432,64; 9,82=96,04; 18,22=331,24; 15,82=249,64; 28,22=795,24.
  4. Сложить полученные результаты. 432,64+96,04+331,24+249,64+795,24=1904,8
  5. Полученный результат делиться на количество значений в ряду. 1904,8/5=380,96
  6. Корень из полученного числа и будет средним отклонением √380,96=19,51

Обязательный минимум

Под понятием абсолютного отклонения принято подразумевать отличия одного показателя от другого в числовом значении. Например, разница выручки за два дня: 15-13=2, где 2 – абсолютное отклонение. Этот способ подходит для нахождения отклонения между фактическим и планируемым результатом.

Для правильного выбора уменьшаемого и вычитаемого, необходимо четко понимать, для чего находится отклонения, например в случае с прибылью, планируемая будет уменьшаемым, а фактическая – вычитаемым. Использование абсолютного отклонения редко помогает при глубоком анализе ситуации.

Процент воспринимается лучше

Относительным отклонением считают процентное отношение одного показателя к другому.

Чаще всего его рассчитывают для понимания того, как тот или иной компонент относится к целому значению ли параметру, а также для нахождения отношения между планируемым показателем и фактическим.

Это помогает найти отношение затрат на транспортировку к сумме всех затрат, или объясняет, как в процентах относится полученная выручка к планируемой.

Применение относительного отклонения позволяет повысить уровень наглядности проводимого анализа, что в свою очередь дает возможность более точно вычленить и оценить произошедшие в системе изменения.

Для примера можно найти абсолютное отклонение для полученной выручки относительно планируемой: при соответствующих значениях 1600 и 2000, оно составит 2000-1600=400. Это визуально воспринимается не так серьезно, как процентное отношение (2000-1600)/1600*100%=25%. Отклонение в 25% воспринимается более серьезно.

Как это поможет в сезонной работе

Селективное отклонение призвано помочь сравнить исследуемые данные за определенные промежутки времени. Данным отрезком времени могут быть кварталы, месяцы, не редко это сравнения дней.
И для большей информативности необходимо сравнивать временные отрезки не в пределах одного года, а с такими же за прошлые года.

Это более точно покажет общую тенденцию изменений величин на протяжении нескольких лет и поможет четче выявить влияющие на них факторы.

Наибольшую актуальность применение селективного отклонения находит в фирмах, доход которых неравномерно распределен на протяжении года. То есть поставщики сезонных продуктов или услуг.

Как выявить тренд отклонения

Сумма, исчисляемая нарастающим итогом, называется кумулятивным отклонением. Благодаря ему производится оценка параметра, его рост или падение за заданный промежуток времени, чаще всего месяц. А также позволяет спланировать конечный результат изменений за период.

Благодаря этому можно игнорировать случайные, несистематические изменения параметра, не влияющие на долгосрочную перспективу (весь период) и давать более четкую тенденцию движения параметра.

Она чаще всего показывается в виде прямой на графике, последовательно отмечающем все показатели параметра, и соединяющей начальную и конечную точки ломаной линии. Ее направление вниз или вверх и будет тенденцией.

Отклонение во временном разрезе

Зачастую с его помощью происходит сравнение фактического и планируемого показателя. Является крайне важным в случае негативного отклонения планового значения от фактического. Позволяет использовать в анализе реальный результат вместо планируемого или желаемого показателей.

Источник: https://finrussia.ru/articles/kak-pravilno-rasschitat-otklonenie/

Как рассчитать отклонение

Как рассчитать отклонение

Многие экономисты ломают себе голову над тем, как рассчитать стандартное отклонение и что это такое. Кроме того, им еще нужно знать, что такое абсолютное отклонение и относительное. В этой статье описаны методы расчетов этих отклонений.

Стандартное отклонение

Стандартное отклонение, как рассчитать его? Для начала нужно понять, что же такое стандартное отклонение. Это очень существенный показатель рассеяния в разделе описательной статистики. Стандартное отклонение можно рассчитать по следующему алгоритму:

  1. Сначала — вычисление среднего арифметического выборки данных.
  2. Затем нужно вычесть среднее арифметическое от каждого элемента выборки.
  3. Каждую полученную разницу следует возвести в квадрат.
  4. Сложить все квадраты разниц, полученные в пункте 3.
  5. Поделить сумму квадратов на количество элементов выборки.
  6. Теперь из этого частного нужно извлечь квадратный корень.

Результат, который вы получите, и будет являться стандартным отклонением.

Абсолютное отклонение

Как рассчитать абсолютное отклонение? Абсолютным отклонением можно назвать разницу, получаемую при вычитании одной величины из другой, этот способ является выражением сложившихся положений вещей между плановым и фактическим параметрами.

Известно, что определенную проблему обычно вызывает такой показатель, как знак абсолютного отклонения. Обычно считается, что отклонение, которое позитивно сказывается на прибыли предприятия, считается положительным, и в вычислениях его ставят со знаком «+».

Что же касается банальной математики, такой подход считается не совсем корректным, а это, в свою очередь, вызывает конфликты и разногласия среди специалистов. Исходя из этого, на практике вычисления абсолютного отклонения зачастую пользуются не базовой экономической, а математической моделью.

Математическая модель   заключается в том, что повышение фактического оборота в сравнении с запланированным обозначается знаком «+», а уменьшение фактических издержек в сравнении с плановыми обозначается знаком «-».

Относительное отклонение

Как рассчитать относительное отклонение? Отклонение можно рассчитывать, опираясь на отношение к другим величинам, а это значит, что данный показатель выражается в процентах.

Зачастую относительные отклонения вычисляются по отношению к относительно базовому значению или параметру.

К примеру, можно выразить относительное отклонение, допустим, тех же затрат на материалы, как отношение к суммарной затрате или в проценте к обороту.

В применении относительных отклонений следует учесть, что их наличие способствует повышению уровня информативности анализа, который мы проводим, а следовательно, позволяет более отчетливо оценивать изменение, которое произошло в системе.

Так, можно рассмотреть все на данном примере, возьмём величину абсолютного отклонения оборота, которая будет равна 1000 — 800 = 200.

Данная цифра воспринимается в расчете относительного отклонения не так наглядно, как, к примеру, величина отклонения, показатели в которой выводятся в процентах: (1000 — 800) / 800 * 100% = 25%. Согласитесь, это все-таки режет глаз.

Селективное отклонение

Как рассчитать отклонение такого рода? Этот способ расчета отклонения подразумевает сравнение контролируемых величин на определенном промежутке времени, это может быть такой показатель времени, как квартал или месяц, иногда даже это бывает день.

Сравнивание интересующих нас величин за определенный промежуток времени (к примеру, месяц, давайте возьмем май) текущего года с тем же маем предыдущего года может дать нам  более информативное сравнение с предыдущим месяцем, который рассматривается в плановом периоде.

Селективное отклонение актуальны для фирм, которые занимаются поставкой сезонных услуг. Далее будут описаны еще несколько видов отклонений, знание которых может существенно облегчить вашу жизнь.

Кумулятивное отклонение

Кумулятивным отклонением можно назвать сумму, исчисляемую нарастающим итогом (кумулятивная сумма), и ее отклонение позволяет оценить уровень достижения за определенные периоды (месяцы) или же возможную разницу к окончанию определенного периода.

Возникающее в отдельном периоде случайное колебание параметра деятельности предприятия может привести к значительному отклонению на коротком отрезке времени.

Сама же кумуляция компенсирует случайные отклонения и позволяет более точным образом определить тренд. 

Отклонение во временном разрезе

Как рассчитать отклонение во временном разрезе? Для данного отклонения типичным является сравнение типа факт — план. Отклонение определяется на основании сравнения бюджетного и фактического реализованного значения контролируемого параметра.

Этот подход к вычислению отклонений очень важен при негативном отклонении плановой величины от фактической. Также благодаря этому методу появляется возможность оперировать реальными фактами вместо того, чтобы опираться на плановые и желаемые показатели. 

Источник:

Как посчитать процент отклонения в Excel по двум формулам

Понятие процент отклонения подразумевает разницу между двумя числовыми значениями в процентах. Приведем конкретный пример: допустим одного дня с оптового склада было продано 120 штук планшетов, а на следующий день – 150 штук.

Разница в объемах продаж – очевидна, на 30 штук больше продано планшетов в следующий день. При вычитании от 150-ти числа 120 получаем отклонение, которое равно числу +30.

Возникает вопрос: чем же является процентное отклонение?

Процент отклонения вычисляется через вычитание старого значения от нового значения, а далее деление результата на старое значение. Результат вычисления этой формулы в Excel должен отображаться в процентном формате ячейки. В данном примере формула вычисления выглядит следующим образом (150-120)/120=25%. Формулу легко проверить 120+25%=150.

Обратите внимание! Если мы старое и новое число поменяем местами, то у нас получиться уже формула для вычисления наценки.

Ниже на рисунке представлен пример, как выше описанное вычисление представить в виде формулы Excel. Формула в ячейке D2 вычисляет процент отклонения между значениями продаж для текущего и прошлого года: =(C2-B2)/B2

Важно обратит внимание в данной формуле на наличие скобок. По умолчанию в Excel операция деления всегда имеет высший приоритет по отношению к операции вычитания.

Поэтому если мы не поставим скобки, тогда сначала будет разделено значение, а потом из него вычитается другое значение. Такое вычисление (без наличия скобок) будет ошибочным.

Закрытие первой части вычислений в формуле скобками автоматически повышает приоритет операции вычитания выше по отношению к операции деления.

Правильно со скобками введите формулу в ячейку D2, а далее просто скопируйте ее в остальные пустые ячейки диапазона D2:D5.

Чтобы скопировать формулу самым быстрым способом, достаточно подвести курсор мышки к маркеру курсора клавиатуры (к нижнему правому углу) так, чтобы курсор мышки изменился со стрелочки на черный крестик.

После чего просто сделайте двойной щелчок левой кнопкой мышки и Excel сам автоматически заполнит пустые ячейки формулой при этом сам определит диапазон D2:D5, который нужно заполнить до ячейки D5 и не более. Это очень удобный лайфхак в Excel.

В альтернативной формуле, вычисляющей относительное отклонение значений продаж с текущего года сразу делиться на значения продаж прошлого года, а только потом от результата отнимается единица: =C2/B2-1.

Как видно на рисунке результат вычисления альтернативной формулы такой же, как и в предыдущей, а значит правильный. Но альтернативную формулу легче записать, хот и возможно для кого-то сложнее прочитать так чтобы понять принцип ее действия. Или сложнее понять, какое значение выдает в результате вычисления данная формула если он не подписан.

Единственный недостаток данной альтернативной формулы – это отсутствие возможности рассчитать процентное отклонение при отрицательных числах в числителе или в заменителе. Даже если мы будем использовать в формуле функцию ABS, то формула будет возвращать ошибочный результат при отрицательном числе в заменителе.

Так как в Excel по умолчанию приоритет операции деления выше операции вычитания в данной формуле нет необходимости применять скобки.

Источник:

Как правильно рассчитать отклонение, и для чего это нужно

Для эффективного анализа данных и для нахождения проблемных участков в производстве необходимо находить отклонения в показателях. Отклонения бывают нескольких видов и отличаются как единицами измерения, так и способом получения, среди них можно выделить:

  • Стандартное отклонение;
  • Абсолютное отклонение;
  • Относительное отклонение;
  • Селективное отклонение;
  • Кумулятивное отклонение;
  • Отклонение во временном разрезе.

Как рассчитать отклонение в каждом случае, вы узнаете из этой статьи.

Как найти среднеквадратическое отклонение

Как рассчитать отклонение

В данной статье я расскажу о том, как найти среднеквадратическое отклонение.

Этот материал крайне важен для полноценного понимания математики, поэтому репетитор по математике должен посвятить его изучению отдельный урок или даже несколько.

В этой статье вы найдёте ссылку на подробный и понятный видеоурок, в котором рассказано о том, что такое среднеквадратическое отклонение и как его найти.

Среднеквадратическое отклонение дает возможность оценить разброс значений, полученных в результате измерения какого-то параметра. Обозначается символом (греческая буква «сигма»).

Формула для расчета довольно проста. Чтобы найти среднеквадратическое отклонение, нужно взять квадратный корень из дисперсии. Так что теперь вы должны спросить: “А что же такое дисперсия?”

Что такое дисперсия

Определение дисперсии звучит так. Дисперсия — это среднее арифметическое от квадратов отклонений значений от среднего.

Чтобы найти дисперсию последовательно проведите следующие вычисления:

  • Определите среднее (простое среднее арифметическое ряда значений).
  • Затем от каждого из значений отнимите среднее и возведите полученную разность в квадрат (получили квадрат разности).
  • Следующим шагом будет вычисление среднего арифметического полученных квадратов разностей (Почему именно квадратов вы сможете узнать ниже).

Рассмотрим на примере. Допустим, вы с друзьями решили измерить рост ваших собак (в миллиметрах). В результате измерений вы получили следующие данные измерений роста (в холке): 600 мм, 470 мм, 170 мм, 430 мм и 300 мм.

Порода собакиРост в миллиметрах
Ротвейлер600
Бульдог470
Такса170
Пудель430
Мопс300

Вычислим среднее значение, дисперсию и среднеквадратическое отклонение.

Сперва найдём среднее значение. Как вы уже знаете, для этого нужно сложить все измеренные значения и поделить на количество измерений. Ход вычислений:

Среднее   мм.

Итак, среднее (среднеарифметическое) составляет 394 мм.

Теперь нужно определить отклонение роста каждой из собак от среднего:

Наконец, чтобы вычислить дисперсию, каждую из полученных разностей возводим в квадрат, а затем находим среднее арифметическое от полученных результатов:

Дисперсия мм2.

Таким образом, дисперсия составляет 21704 мм2.

Как найти среднеквадратическое отклонение

Так как же теперь вычислить среднеквадратическое отклонение, зная дисперсию? Как мы помним, взять из нее квадратный корень. То есть среднеквадратическое отклонение равно:

мм (округлено до ближайшего целого значения в мм).

Применив данный метод, мы выяснили, что некоторые собаки (например, ротвейлеры) – очень большие собаки. Но есть и очень маленькие собаки (например, таксы, только говорить им этого не стоит).

Самое интересное, что среднеквадратическое отклонение несет в себе полезную информацию. Теперь мы можем показать, какие из полученных результатов измерения роста находятся в пределах интервала, который мы получим, если отложим от среднего (в обе стороны от него) среднеквадратическое отклонение.

То есть с помощью среднеквадратического отклонения мы получаем “стандартный” метод, который позволяет узнать, какое из значений является нормальным (среднестатистическим), а какое экстраординарно большим или, наоборот, малым.

Что такое стандартное отклонение

Но… все будет немного иначе, если мы будем анализировать выборку данных. В нашем примере мы рассматривали генеральную совокупность. То есть наши 5 собак были единственными в мире собаками, которые нас интересовали.

Но если данные являются выборкой (значениями, которые выбрали из большой генеральной совокупности), тогда вычисления нужно вести иначе.

Если есть значений, то:

  • Когда мы имеем дело с генеральной совокупностью при вычислении дисперсии, мы делим на  (как и было сделано в рассмотренном нами примере).
  • Когда мы имеем дело с выборкой, при вычислении дисперсии делим на .

Все остальные расчеты производятся аналогично, в том числе и определение среднего.

Например, если наших пять собак – только выборка из генеральной совокупности собак (всех собак на планете), мы должны делить на 4, а не на 5, а именно:

Дисперсия выборки =  мм2.

При этом стандартное отклонение по выборке равно мм (округлено до ближайшего целого значения).

Можно сказать, что мы произвели некоторую “коррекцию” в случае, когда наши значения являются всего лишь небольшой выборкой.

Примечание. Почему именно квадраты разностей?

Но почему при вычислении дисперсии мы берём именно квадраты разностей? Допустим при измерении какого-то параметра, вы получили следующий набор значений: 4; 4; -4; -4. Если мы просто сложим абсолютные отклонения от среднего (разности) между собой … отрицательные значения взаимно уничтожатся с положительными:

.

Получается, этот вариант бесполезен. Тогда, может, стоит попробовать абсолютные значения отклонений (то есть модули этих значений)?

.

На первый взгляд получается неплохо (полученная величина, кстати, называется средним абсолютным отклонением), но не во всех случаях. Попробуем другой пример. Пусть в результате измерения получился следующий набор значений: 7; 1; -6; -2. Тогда среднее абсолютное отклонение равно:

.

Вот это да! Снова получили результат 4, хотя разности имеют гораздо больший разброс.

А теперь посмотрим, что получится, если возвести разности в квадрат (и взять потом квадратный корень из их суммы).

Для первого примера получится:

.

Для второго примера получится:

.

Теперь – совсем другое дело! Среднеквадратическое отклонение получается тем большим, чем больший разброс имеют разности … к чему мы и стремились.

Фактически в данном методе использована та же идея, что и при вычислении расстояния между точками, только примененная иным способом.

И с математической точки зрения использование квадратов и квадратных корней дает больше пользы, чем мы могли бы получить на основании абсолютных значений отклонений, благодаря чему среднеквадратическое отклонение применимо и для других математических задач.

О том, как найти среднеквадратическое отклонение, вам рассказал репетитор по математике в Москве, Сергей Валерьевич

Источник: https://yourtutor.info/%D1%81%D1%80%D0%B5%D0%B4%D0%BD%D0%B5%D0%BA%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5-%D0%BE%D1%82%D0%BA%D0%BB%D0%BE%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5

Как посчитать отклонение в процентах к предыдущему году?

Как рассчитать отклонение

» Прочее »

Загрузка…

Вопрос знатокам: как посчитать процент отклонения отчетного года от предыдущего года?

С уважением, Юлия Берзенева

Лучшие ответы

Берешь данные отчетного года минус предыдущий год-это будут абсолютные отклонения, т. е. в суммовом выражений, А что бы посчитать Темпы роста, надо отчетный год разделить на предыдущий и умножить на 100.

-ответ

Это видео поможет разобраться

Ответы знатоков

Фактическую цифру умнож. на 100 и разделить на цифру плановую. От данного значения минус 100.Если результат отрицательный то значит на столько план не выполнен если положительный то соответственно перевыполнен план.

Факт / План — 100 * 100 (результат — это проценты)
положительное значение — план превышен, отрицательное — соответственно, наоборот!

Например план 3000 шт. , сделано 3500 3000 — 100%3500 — х следовательно х=117% план перевыполнен на 17%, или 3000 а сделали 20003000 — 100%

2000 — х х=67% план недовыполнен на 33%. Удачи.

Где логика решения данной задачи???
Ни у одного ответившего нет математической логики данных решений!

Привожу пример:Плановая величина (по плану) = 195Фактическая величина (измеренная, высчитанная) = 112Что в данном случае нам может быть и известно.

Для начала расчёта «отклонение от плана В ПРОЦЕНТАХ», нам понадобится найти Абсолютное отклонение от плана (разница фактической и плановой величины). 112-195=(-83) — Это Абсолютное отклонение.

(Если со знаком -(минус) значит план не превышен, наоборот если со знаком +(плюс) то значит план превышен. С этим разобрались, поехали…

Далее чтобы найти «отклонение от плана В ПРОЦЕНТАХ» берём величину (абсолютное отклонение) делим на плановую величину «195» и получаемый результат выражаем в процентах, а то бишь умножаем на 100.

Формулы, для тех кому лениво читать:((факт-план) /план) *100=процентное отклонение.((112-195)/195)*100=(-42,56)Из примера по порядку:112-195=(-83)-83/195=(-0,4256)

-0,4256*100=(-42,56% Вот и наше отклонение).

P.S. Я не говорю что у ответивших людей — ответы неправильные. Я лишь написал потому-что люди либо не понимают, либо не знают логики исчисления процентного отклонения.Ответившая: «НатулЁк Мыслитель (5694) 7 лет назад»Привела совсем не правильную формулу. Из которой получается не**ический ответ.

Всем спасибо за внимание.

UB1AFU Ученик (105) 1 месяц назад

возьми с полки пирожок

Источник: https://dom-voprosov.ru/prochee/kak-poschitat-otklonenie-v-protsentah-k-predydushhemu-godu

Как найти относительное изменение в процентах

Как рассчитать отклонение

Как рассчитать абсолютное отклонение за 2 года в таблице?

Примеры расчетов, как все сделать, придерживаясь плана?

Абсолютное отклонение: что это такое и как его рассчитать?

Абсолютное отклонение — это различие в показателях отчетного или текущего периодов и любого другого прошедшего периода. Оно вычисляется для того, чтобы выяснить, насколько рентабельно предприятие.

Для расчета берутся два показателя (данные двух периодов или запланированные и фактические показатели), из них выбирается большее, а затем из него вычитают меньшее. Если налицо фактическое повышение оборота, то значение записывают со знаком «+», если уменьшение — соответственно, с «-«.

Относительное отклонение: что это и как оно рассчитывается?

По сути, относительное отклонение — это то же абсолютное, однако оно выражено уже не в конкретных числах, а в процентах. При этом значение на выходе всегда будет положительным.

Как найти относительное отклонение? Мы берем показатель текущего периода (или фактический показатель) и делим его на показатель более раннего периода (или планового), умножаем полученное значение на 100 и вычитаем 100.

3.3. Абсолютные и относительные отклонения

Абсолютное отклонение – это разность между фактической и базовой величиной показателя. Абсолютные отклонения могут быть рассчитаны для любых количественных и качественных показателей (объема продукции, количественных и качественных показателей, характеризующих использование ресурсов, величины активов, прибыли, финансовых коэффициентов и т. п.). Например,

среднесписочная численность работающих;

выработка продукции на одного работающего.

Базовые значения показателей в анализе принято обозначать индексом 0, фактические – 1, отклонения (изменения) – символом ?.

Относительное отклонениепозволяет измерить прирост ресурса с учетом темпов роста продукции, выпущенной с использованием данного ресурса. Относительные отклонения вычисляются только для количественных показателей, характеризующих величину потребленных ресурсов (затрат ресурсов).

Чтобы найти относительное отклонение, нужно из фактической величины ресурса вычесть его базовую величину, скорректированную на коэффициент изменения объема продукции.

Величина R0 ? k N показывает, сколько ресурсов было бы необходимо для производства фактического объема продукции, если бы не изменялись качественные характеристики использования ресурсов.

Отрицательное относительное отклонение называется относительной экономией ресурса, положительное – относительным перерасходом.

Если представить фактическую величину ресурса через его базовую величину и темп роста, формулу исчисления относительного отклонения можно преобразовать следующим образом:

Такое представление демонстрирует, что относительное отклонение возникает за счет разницы темпов роста ресурса и продукции.

Если темп роста продукции опережает темп роста ресурса, возникает относительная экономия, что свидетельствует о достаточно эффективном использовании ресурса.

Если же темп роста ресурса превышает темп роста продукции, ресурс используется неэффективно, о чем свидетельствует относительный перерасход.

Если же темпы роста ресурса и продукции совпадают, относительное отклонение равно нулю. Это означает, что прирост продукции получен экстенсивным путем, т. е. только за счет привлечения дополнительных ресурсов. При этом качественные показатели использования ресурса не изменяются.

На основании данных таблицы 3.1 оценим эффективность использования трудовых ресурсов.

Исходные данные для оценки эффективности использования трудовых ресурсов

Как определить динамику изменения значений при отклонении

Нередко для того, чтобы понять насколько плавно изменяется тот или иной показатель на нескольких отрезках времени, простого среднего значения, сравниваемого с наименьшим или наибольшим числом из ряда – недостаточно. В таких случаях для более глубоко анализа применяется нахождение стандартного отклонения, показывающего более четко динамику изменения значений.

Даны показатели затрат на средства уборки для двух заведений: 10, 21, 49, 15, 59 и 31, 29, 34, 27, 32, где средним значением будет 30,8 и 30,6.

Показатели в среднем приблизительно одинаковы, однако даже визуально видно, что значения в одном заведении изменяются не равномерно, что их контроль производится от случая к случаю. Но для более полного представления необходимо найти стандартное отклонение. Оно будет равно: 19,51 и 2,4.

[attention type=red]
При среднем значении в первом заведении 30,8 показатели отклоняются от него более чем существенно – 21,8, соответственно у вас есть подтверждение небрежного отношения к работе.
[/attention]

Рассчитывается оно следующим образом:

  1. Необходимо рассчитать среднее значение для проверяемого ряда данных. (10+21+49+15+59)/5=30,8
  2. Найти разницу между каждым показателем и средним значением. 10-30,8=-20,8; 21-30,8=9,8; 49-30,8=18,2; 15-30,8=15,8; 59-30,8=28,2
  3. Возвести каждое значение разницы в квадрат.

    -20,82=432,64; 9,82=96,04; 18,22=331,24; 15,82=249,64; 28,22=795,24.

  4. Сложить полученные результаты. 432,64+96,04+331,24+249,64+795,24=1904,8
  5. Полученный результат делиться на количество значений в ряду.

    1904,8/5=380,96

  6. Корень из полученного числа и будет средним отклонением ?380,96=19,51

Обязательный минимум

Под понятием абсолютного отклонения принято подразумевать отличия одного показателя от другого в числовом значении. Например, разница выручки за два дня: 15-13=2, где 2 – абсолютное отклонение. Этот способ подходит для нахождения отклонения между фактическим и планируемым результатом.

Для правильного выбора уменьшаемого и вычитаемого, необходимо четко понимать, для чего находится отклонения, например в случае с прибылью, планируемая будет уменьшаемым, а фактическая – вычитаемым. Использование абсолютного отклонения редко помогает при глубоком анализе ситуации.

Процент воспринимается лучше

Относительным отклонением считают процентное отношение одного показателя к другому.

Чаще всего его рассчитывают для понимания того, как тот или иной компонент относится к целому значению ли параметру, а также для нахождения отношения между планируемым показателем и фактическим.

Это помогает найти отношение затрат на транспортировку к сумме всех затрат, или объясняет, как в процентах относится полученная выручка к планируемой.

Применение относительного отклонения позволяет повысить уровень наглядности проводимого анализа, что в свою очередь дает возможность более точно вычленить и оценить произошедшие в системе изменения.

Как это поможет в сезонной работе

Селективное отклонение призвано помочь сравнить исследуемые данные за определенные промежутки времени. Данным отрезком времени могут быть кварталы, месяцы, не редко это сравнения дней.
И для большей информативности необходимо сравнивать временные отрезки не в пределах одного года, а с такими же за прошлые года.

Это более точно покажет общую тенденцию изменений величин на протяжении нескольких лет и поможет четче выявить влияющие на них факторы.

Наибольшую актуальность применение селективного отклонения находит в фирмах, доход которых неравномерно распределен на протяжении года. То есть поставщики сезонных продуктов или услуг.

Как выявить тренд отклонения

Сумма, исчисляемая нарастающим итогом, называется кумулятивным отклонением. Благодаря ему производится оценка параметра, его рост или падение за заданный промежуток времени, чаще всего месяц. А также позволяет спланировать конечный результат изменений за период.

Благодаря этому можно игнорировать случайные, несистематические изменения параметра, не влияющие на долгосрочную перспективу (весь период) и давать более четкую тенденцию движения параметра.

Она чаще всего показывается в виде прямой на графике, последовательно отмечающем все показатели параметра, и соединяющей начальную и конечную точки ломаной линии. Ее направление вниз или вверх и будет тенденцией.

Формула процентного изменения в Excel

Формула процентного изменения очень часто используется в Excel. Например, чтобы вычислить ежемесячное или общее изменение.

Ежемесячное изменение

  1. Выберите ячейку C3 и введите формулу, показанную ниже.
  2. Выберите ячейку C3 и примените к ней процентный формат.
  3. Чтобы не повторять 1-й и 2-й шаг еще десять раз, выделите ячейку C3, нажмите на ее правый нижний угол и перетащите его вниз до ячейки С13.
  4. Проверьте, всели прошло хорошо.

Общее изменение

  1. Аналогичным образом, мы можем вычислить общее изменение. На этот раз зафиксируем ссылку на ячейку В2. Выделите ячейку D3 и введите формулу, показанную ниже.
  2. Выберите ячейку D3 и применить к ней процентный формат.

  3. Выделите ячейку D3, нажмите на ее правый нижний угол и перетащите его вниз до ячейки D13.
  4. Проверьте, всели прошло хорошо.

Объяснение: Когда мы протягиваем (копируем) формулу вниз, абсолютная ссылка ($B$2) остается неизменной, а относительная (B3) изменяется – B4, B5, B6 и т.д.

Возможно, этот пример слишком сложен для вас на данном этапе, но он показывает несколько полезных и мощных возможностей, которыми располагает Excel.

Статья написана по материалам сайтов: studfiles.net, finrussia.ru, office-guru.ru.

«

Источник: https://arenaprava.ru/drugoe/kak-najti-otnositelnoe-izmenenie-v-protsentah/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.