Как решать уравнения с корнями

Содержание

Как решать уравнения с корнями

Как решать уравнения с корнями

11.04.2018

Иррациональным называется уравнение, содержащее переменную под знаком радикала (корня).

Чтобы хорошо понять, о чем здесь пойдет речь, повтори темы:

И не забудь еще об одном… У нас ты можешь пройти Пробный ЕГЭ по математике и получить результ немедленно. Но если тебе это не нужно, читай дальше.

Простейшие иррациональные уравнения

Начнем с самого простого: уравнения вида .

Например: . Как его решить? Как избавиться от корня? Правильно, квадратный корень убирается возведением в квадрат:

.

А как решить такое: ?

И снова вспомним определение корня степени : – это такое число, которое нужно возвести в степень , чтобы получить . В данном случае эта степень равна :

Итак, общее правило:

Хорошо, а что с этим: ? Все просто: квадрат и корень уничтожаются, и получаем , верно?

Нет! Когда мы проходили корни, на это обращали особое внимание: здесь два корня –  и , ведь . Не забываем правило:

Реши сам:

Ответы:

Учет ОДЗ

Помнишь, что такое ОДЗ? ОДЗ (область допустимых значений) уравнения или неравенства – это множество значений переменной, при которых обе части данного уравнения (или неравенства) имеют смысл.

Например, в уравнении присутствует квадратный корень. А квадратный корень не имеет смысла, если подкоренное выражение отрицательно. То есть, в данном случае ОДЗ – это решения неравенства .

Нет необходимости искать ОДЗ в каждой задаче, содержащей корень.

Взять, например, задачу из предыдущей главы: . При возведении в квадрат получаем , то есть подкоренное выражение автоматически неотрицательно! Так зачем лишняя писанина?

Но в некоторых случаях это может быть очень полезно. Более того, иногда можно решить пример просто найдя ОДЗ.

Пример:

ОДЗ: .

Но при таких  правая часть уравнения неположительна, а левая, как и любой приличный квадратный корень, неотрицательна. Тогда равенство возможно только если обе части уравнения равны нулю, то есть при : .

Ответ: .

Еще пример:

Решение:

Найдем ОДЗ:

Итак, уравнение имеет смысл только при одном значении переменной. Проверим его – подставим в уравнение. Что получилось? Если получилось , все верно: корень  подходит.

Ответ: .

Большинство стандартных иррациональных уравнений не требуют нахождения ОДЗ – как и в приведенном в начале примере, ОДЗ оказывается автоматически учтенной после равносильного преобразования.

Иррациональные уравнения вида

Здесь и далее большими буквами , , , и т.д. я буду обозначать не переменные или параметры, а целые выражения, содержащие переменную. Так, общая запись соответствует, например, уравнению : здесь и .

Как решить такое уравнение?

Во-первых, корни равны только когда подкоренные выражения равны: . Но недаром мы недавно вспоминали про ОДЗ. Есть ли какие-нибудь ограничения в этом уравнении?

Действительно, чтобы уравнение имело смысл, необходимо, чтобы оба подкоренных выражения были неотрицательны:

Но поскольку эти выражения равны друг другу, достаточно потребовать неотрицательности только одного из них:

Примеры (реши сам):

Ответы:

1. Какое из выражений будем проверять на неотрицательность? Конечно же то, которое проще, то есть :

2.

3.

Все понятно в этих решениях? Если нет, значит ты скорее всего не повторил тему «Квадратные неравенства».

Решение кубических уравнений

Как решать уравнения с корнями

Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные,  а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

Решение двучленного кубического уравнения вида Ax3+B=0

Кубическое уравнение, содержащее двучлен, имеет вид Ax3+B=0 . Его необходимо приводить к x3+BA=0   с помощью деления на А, отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

x3+BA=0x+BA3x2-BA3x+BA23=0

Результат первой скобки примет вид x=-BA3, а квадратный трехчлен – x2-BA3x+BA23, причем только с комплексными корнями.

Пример 1

Найти корни кубического уравнения 2×3-3=0.

Решение

Необходимо найти х из уравнения. Запишем:

2×3-3=0x3-32=0

Необходимо применить формулу сокращенного умножения. Тогда получим, что

x3-32=0x-3326×2+3326x+923=0

Раскроем первую скобку и получим x=3326. Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

Ответ: x=3326.

Решение возвратного кубического уравнения вида Ax3+Bx2+Bx+A=0

Вид квадратного уравнения – Ax3+Bx2+Bx+A=0, где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

Ax3+Bx2+Bx+A=Ax3+1+Bx2+x==Ax+1×2-x+1+Bxx+1=x+1Ax2+xB-A+A

Корень уравнения равен х=-1, тогда для получения корней квадратного трехчлена Ax2+xB-A+A необходимо задействовать через нахождение дискриминанта.

Пример 2

Решить уравнение вида 5×3-8×2-8x+5=0.

Решение

Уравнение является возвратным. Необходимо произвести группировку. Получим, что

5×3-8×2-8x+5=5×3+1-8×2+x==5x+1×2-x+1-8xx+1=x+15×2-5x+5-8x==x+15×2-13x+5=0

Если х=-1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5×2-13x+5:

5×2-13x+5=0D=(-13)2-4·5·5=69×1=13+692·5=1310+6910×2=13-692·5=1310-6910

Ответ:

x1=1310+6910×2=1310-6910×3=-1

Решение кубических уравнений с рациональными корнями

Если х=0, то он является корнем уравнения вида Ax3+Bx2+Cx+D=0. При свободном члене D=0 уравнение принимает вид Ax3+Bx2+Cx=0. При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид xAx2+Bx+C=0.

Пример 3

Найти корни заданного уравнения 3×3+4×2+2x=0.

Решение

Упростим выражение.

3×3+4×2+2x=0x3x2+4x+2=0

Х=0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3×2+4x+2. Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

D=42-4·3·2=-8. Так как его значение отрицательное, то корней трехчлена нет.

Ответ: х=0.

Когда коэффициенты уравнения Ax3+Bx2+Cx+D=0 целые, то в ответе можно получить иррациональные корни. Если A≠1, тогда при умножении на A2 обеих частей уравнения проводится замена переменных, то есть у=Ах:

Ax3+Bx2+Cx+D=0A3·x3+B·A2·x2+C·A·A·x+D·A2=0y=A·x⇒y3+B·y2+C·A·y+D·A2

Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y1 будет являться корнем. Значит и корнем исходного уравнения вида x1=y1A. Необходимо произвести деление многочлена Ax3+Bx2+Cx+D на x-x1. Тогда сможем найти корни квадратного трехчлена.

Пример 4

Найти корни заданного уравнения 2×3-11×2+12x+9=0.

Решение

Необходимо произвести преобразование с помощью умножения на 22 обеих частей, причем с заменой переменной типа у=2х. Получаем, что

2×3-11×2+12x+9=023×3-11·22×2+24·2x+36=0y=2x⇒y3-11y2+24y+36=0

Свободный член равняется 36, тогда необходимо зафиксировать все его делители:

±1,±2,±3,±4,±6,±9,±12,±36

Необходимо произвести подстановку y3-11y2+24y+36=0, чтобы получить тождество вида

13-11·12+24·1+36=50≠0(-1)3-11·(-1)2+24·(-1)+36=0

Отсюда видим, что у=-1 – это корень. Значит, x=y2=-12.

Далее следует деление 2×3-11×2+12x+9 на x+12 при помощи схемы Горнера:

xiКоэффициенты многочлена
2-11129
-0.52-11+2·(-0.5)=-1212-12·(-0.5)=189+18·(-0.5)=0

Имеем, что

2×3-11×2+12x+9=x+122×2-12x+18==2x+12×2-6x+9

После чего необходимо найти корни квадратного уравнения вида x2-6x+9. Имеем, что уравнение следует привести к виду x2-6x+9=x-32, где х=3 будет его корнем.

Ответ: x1=-12, x2,3=3.

Замечание

Алгоритм можно применять для возвратных уравнений. Видно, что -1 – это его корень, значит, левая часть может быть поделена на х+1. Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

Решение кубических уравнений по формуле Кардано

Нахождение кубических корней возможно при помощи формулы Кардано. При A0x3+A1x2+A2x+A3=0 необходимо найти B1=A1A0, B2=A2A0, B3=A3A0.

После чего p=-B123+B2 и q=2B1327-B1B23+B3.

Полученные p и q в формулу Кардано. Получим, что

y=-q2+q24+p3273+-q2-q24+p3273

Подбор кубических корней должен удовлетворять на выходе значению -p3. Тогда корни исходного уравнения x=y-B13. Рассмотрим решение предыдущего примера, используя формулу Кардано.

Пример 5

Найти корни заданного уравнения 2×3-11×2+12x+9=0.

Решение

Видно, что A0=2, A1=-11, A2=12, A3=9.

Необходимо найти B1=A1A0=-112, B2=A2A0=122=6, B3=A3A0=92.

Отсюда следует, что

p=-B123+B2=–11223+6=-12112+6=-4912q=2B1327-B1B23+B3=2·-112327–112·63+92=343108

Производим подстановку в формулу Кордано и получим

y=-q2+q24+p3273+-q2–q24+p3273==-343216+34324·1082-49327·1233+-343216-34324·1082-49327·1233==-3432163+-3432163

-3432163  имеет три значения. Рассмотрим их ниже.

-3432163=76cosπ+2π·k3+i·sinπ+2π·k3, k=0, 1, 2

Если k=0, тогда -3432163=76cosπ3+i·sinπ3=7612+i·32

Если k=1, тогда -3432163=76cosπ+i·sinπ=-76

Если k=2, тогда -3432163=76cos5π3+i·sin5π3=7612-i·32

Необходимо произвести разбиение по парам, тогда получим -p3=4936.

Тогда получим пары: 7612+i·32  и 7612-i·32, -76 и -76, 7612-i·32 и 7612+i·32.

Преобразуем при помощи формулы Кордано:

y1=-3432163+-3432163==7612+i·32+7612-i·32=7614+34=76y2=-3432163+-3432163=-76+-76=-146y3=-3432163+-3432163==7612-i·32+7612+i·32=7614+34=76

Значит,

x1=y1-B13=76+116=3×2=y2-B13=-146+116=-12×3=y3-B13=76+116=3

Ответ: x1=-12,  x2,3=3

При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/matematika/systems/reshenie-kubicheskih-uravnenij/

Как решать уравнения с корнями – Ответы на все вопросы

Как решать уравнения с корнями

06.11.2019

В ходе этого занятия мы узнаем об уравнениях, в которых переменная стоит под знаком квадратного или другого корня, такие уравнения называются иррациональными. Мы приведём пример иррациональных уравнений, а также научимся их правильно решать.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Уравнения и неравенства»

Для начала нам необходимо понять, что же такое иррациональное уравнение. Иррациональными называются такие уравнения, в которых переменная стоит под знаком корня. Приведём примеры иррациональных уравнений:

Теперь решим вышеприведенные уравнения.

Нам необходимо возвести обе части уравнения в квадрат, чтобы избавиться от знака корня.

Мы считаем, что нашли корни уравнения, однако мы нашли лишь корни уравнения после возведения исходного в квадрат ( 2x−5=4x−7). Чтобы проверить, подходит ли нам корень , сделаем проверку: Если , то   => Несмотря на то, что с первого взгляда с двух сторон уравнения у нас стоят выражения одинаковые, полученное равенство неверно, поскольку, по определению квадратного корня, подкоренное выражение должно быть неотрицательным, т. е.  не существует. Поскольку мы ничего не знаем о возможностях каких-либо арифметических действий с числами типа , то равенство   не верно, а соответственно  – посторонний корень для исходного уравнения. Ответ: нет решения. Теперь сделаем проверку нашего решения: Проверка доказала, что равенство выполняется, значит,  – корень исходного уравнения. Ответ:

Таким образом мы видим, что, решая иррациональные уравнения, нам необходимо всегда делать проверку полученных корней. Для того чтобы понять, почему это происходит, давайте решим ещё один пример.

Решаем по уже известной нам схеме и возводим обе части в квадрат.

Не забываем, что мы решили квадратное уравнение и нашли его корни, а не корни исходного иррационального уравнения. Чтобы проверить, подходят ли они нам, делаем проверку.

  1. Проверка:
  2. Мы видим, что равенство получилось неверное, значит,  – не корень исходного иррационального уравнения.
  3. Видим, что равенство получилось верное, поэтому  – корень исходного уравнения.
  4. Ответ:
  5. Теперь вернёмся к нашему вопросу, почему же необходимо проверять корни.
  6. Для этого рассмотрим один не большой, но наглядный пример:
  7. Однако если мы обе части возведём в квадрат, то получим:

Т. е. мы из неверного неравенства получили верное: если после возведения в квадрат числа равны, это не значит, что исходные числа тоже равны (именно поэтому корни уравнений необходимо проверять).

Рассмотрим необходимость проверки корней с другой стороны:

Пусть мы имеем иррациональное уравнение, где . Решаем его так же, как и предыдущие примеры, т. е. возводим обе части в квадрат . Далее предположим, что мы решили это уравнение и получили корни.

Откуда же берутся посторонние корни?  

Полученное уравнение будет правильным тогда и только тогда, когда хотя бы одна из

скобок равна 0, т. е. => .

Посмотрим на всё решение: нам необходимо было решить исходное уравнение , мы его решили и нашли, что , однако вместе с этим мы также получили решение , которое не является решением, именно поэтому при решении иррациональных уравнений мы делаем проверку, чтобы понять какой из корней является непосредственно решением нашего исходного уравнения. Таким образом мы можем сделать следующий вывод: из равенства квадратов не следует равенство аргументов, однако из равенства аргументов следует равенство квадратов.

Мы знаем, что квадратный корень – величина неотрицательная, поэтому не будем вычислять значение под его знаком, а просто скажем, что . Тогда, по определению квадратного корня, также такое неравенство должно выполняться  . Теперь подставим полученное нами первое значение :  – это неравенство неверно, поэтому можем сразу сказать, что  не является корнем исходного иррационального уравнения.

  1. Сделаем аналогично со вторым корнем:  :  неверное неравенство, поэтому корень  также не является корнем исходного иррационального квадратного уравнения.
  2. Таким образом получается, что в данном уравнении нет корней.
  3. Ответ: корней нет.
  4. особенность решения иррациональных уравнений: если мы возводим иррациональное уравнение в квадрат, то  после нахождения корней вторичного уравнения мы обязаны проверить, являются ли эти корни корнями исходного иррационального уравнения.

Итак, мы с вами на данном уроке познакомились с иррациональными квадратными уравнениями, познакомились со способами решения простейших иррациональных квадратных уравнений.

Выучили, что некоторые корни при решении могут оказаться неверными, а для того чтобы избежать неправильного ответа, нам необходимо всегда после полного решения уравнения делать проверку.

Также мы объяснили, почему мы можем получить неверные (посторонние) корни: из равенства квадратов не следует равенство аргументов, однако из равенства аргументов следует равенство квадратов.

И самое главное: после решения иррационального уравнения всегда необходима проверка корней методом их подстановки в исходное уравнение.

Список литературы

  1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.
  2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. 5 издание. – М.: Просвещение, 2010.
  3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

  1. Решите уравнения: a) ; b)
  2. Найдите сумму корней уравнения 
  3. №556 Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. 5 издание. – М.: Просвещение, 2010.

Источник:

Решение иррациональных уравнений

Сайт репетитора по математике Фельдман Инны Владимировны. Профессиональные услуги репетитора по математике в Москве. Подготовка к ГИА и ЕГЭ, помощь отстающим.

2012-02-20

» СТАТЬИ » ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА » Решение иррациональных уравнений

  • Решение  иррациональных уравнений.
  • В этой статье мы поговорим о способах решения простейших иррациональных уравнений.
  • Иррациональным  уравнением  называется уравнение, которое содержит неизвестное под знаком корня.
  • Давайте рассмотрим два вида иррациональных уравнений, которые очень похожи на первый взгляд, но по сути  сильно друг от друга отличаются.

и

В первом уравнении   мы видим, что  неизвестное стоит под знаком корня третьей степени.

Мы можем извлекать корень нечетной степени из отрицательного числа, поэтому в этом уравнении нет никаких ограничений ни на выражение, стоящее под знаком корня, ни на выражение, стоящее в правой части уравнения.

 Мы можем возвести обе части уравнения в третью степень, чтобы избавиться от корня. Получим равносильное уравнение:

  1. При возведении правой и левой части уравнения в нечетную степень  мы можем не опасаться  получить посторонние корни.
  2. Пример 1. Решим уравнение 
  3. Возведем обе части уравнения в третью степень. Получим равносильное уравнение:
  4. Перенесем все слагаемые в одну сторону и вынесем за скобки х:
  5. Приравняем каждый множитель к нулю, получим:
  6. ,   ,    
  7. Ответ: {0;1;2}

Посмотрим внимательно на второе  уравнение: . В левой части уравнения стоит квадратный корень, который принимает только  неотрицательные значения. Поэтому, чтобы уравнение имело решения, правая часть тоже должна быть неотрицательной. Поэтому на правую часть уравнения накладывается условие:

  • – это условие существования корней.
  • Чтобы решить уравнение такого вида, нужно обе части уравнения возвести в квадрат:
  •  (3)
  • Возведение в квадрат может привести к появлению посторонних корней, поэтому нам надо учесть ОДЗ уравнения:
  •  (4)
  • Однако, неравенство (4) следует из условия (3): если в правой части равенства стоит квадрат какого-то выражения, а квадрат любого выражения может принимать только неотрицательные значения, следовательно левая часть тоже должна быть неотрицательна. Поэтому условие (4) автоматически следует из условия (3) и наше уравнение  равносильно системе:
  • Пример 2. Решим уравнение:
  • .
  • Перейдем к равносильной системе:
  • Решим первое уравнение системы и проверим, какие корни удовлетворяют неравеству.
  • ,   
  • Неравеству  удовлетворяет только корень 
  • Ответ: x=1

Внимание! Если мы в процессе решения  возводим обе части уравнения в квадрат, то нужно помнить, что могут появиться посторонние корни. Поэтому либо нужно переходить к равносильной системе, либо в конце решения СДЕЛАТЬ ПРОВЕРКУ: найти корни и подставить их в исходное уравнение.

Пример 3. Решим уравнение:

Чтобы решить это уравнение, нам также нужно возвести обе части в квадрат. Давайте в этом уравнении не будем заморачиваться с ОДЗ и условием существования корней, а просто в конце решения сделаем проверку.

  1. Воозведем обе части уравнения в квадрат:
  2. Перенесем слагаемое, содержащее корень влево, а все остальные слагаемые вправо:
  3. Еще раз возведем обе части уравнения в квадрат:
  4. По тереме Виета:
  5. ,   

Сделаем проверку. Для этого подставим найденные  корни в исходное уравнение. Очевидно, что при   правая часть исходного уравнения отрицательна, а левая положительна.

  • При  получаем верное равенство.
  • Ответ: 

И.В. Фельдман, репетитор по математике.

Источник:

Как решать уравнения с корнем

Хотя пугающий вид символа квадратного корня и может заставить съежиться человека, не сильного в математике, задачи с квадратным корнем не такие уж и трудные, как это может вначале показаться.

Простые задачи с квадратным корнем довольно часто можно решить так же легко, как обычные задачи с умножением или делением. С другой стороны, более сложные задачи могут потребовать некоторых усилий, но с правильным подходом даже они не составят вам труда.

Начните решать задачи с корнем уже сегодня, чтобы научиться этому радикально новому математическому умению!

Определение. Уравнение с одной переменной  называют иррациональным, если хотя бы одна из функций  или  содержит переменную под знаком радикала.

При решении иррациональных уравнений необходимо установить область допустимых значений переменных, исходя из условия, что все радикалы, входящие в уравнение, должны быть арифметическими.

1. Метод пристального взгляда

  • Этот метод основан на следующем теоретическом положении: “Если функция  возрастает в области определения и число  входит в множество значений, то уравнение  имеет единственное решение.”
  • Для реализации метода, основанного на этом утверждении требуется:
  • а) Выделить функцию, которая фигурирует в уравнении.
  • b) Записать область определения данной функции.
  • c) Доказать ее монотонность в области определения.
  • d) Угадать корень уравнения.
  • t) Обосновать, что других корней нет.
  • f) Записать ответ.

Пример 1. .

Наличие радикалов четной степени говорит о том, что подкоренные выражения должны быть неотрицательными. Поэтому сначала найдем область допустимых значение переменной .

Очевидно, что левая часть уравнения не существует ни при одном значении неизвестного . Таким образом, вопрос о решении уравнения снимается – ведь нельзя же осуществить операцию сложения в левой части уравнения, так как не существует сама сумма. Каков же вывод? Уравнение не может иметь решений, так как левая часть не существует ни при одном значении неизвестного .

Источник: https://school5mih.ru/drugoe/kak-reshat-uravneniya-s-kornyami.html

Решение (корни) квадратного уравнения

Как решать уравнения с корнями

Квадратным уравнением называется уравнение вида ax² + bx + c = 0, где x – переменная, которая в уравнении присутствует в квадрате, a, b, c – некоторые числа, причём a ≠ 0.

Например, квадратным является уравнение

2x² – 3x + 1 = 0,

в котором a = 2, b = – 3, c = 1.

В квадратном уравнении ax² + bx + c = 0 коэффициент a называют первым коэффициентом, b – вторым коэффициентом, c – свободным членом.

Уравнения вида ax² + bx = 0,

где c =0,

ax² + c = 0,

где b =0, и

ax² = 0,

где a =0 и b =0,

называются неполными квадратными уравнениями.

Найти корни квадратного уравнения значит решить квадратное уравнение.

Для вычисления корней квадратного уравния служит выражение b² – 4ac, которое называется дискриминантом квадратного уравнения и обозначается буквой D.

Корни квадратного уравнения имеют следующие сферы применения:

– для разложении квадратного трёхлена на множители, что, в свою очередь, является приёмом упрощения выражений (например, сокращения дробей, вынесение за скобки общего знаменателя и т.д.) в частности, при нахождении пределов, производных и интегралов;

– для решения задач на соотношения параметров меняющегося объекта (корни квадратного уравнения, чаще всего один, являются обычно конечным решением).

График квадратичного трёхлена ax² + bx + c – левой части квадратного уравнения – представляет собой параболу, ось симметрии которой параллельна оси 0y. Число точек пересечения параболы с осью 0x определяет число корней квадратного уравнения.

Если точек пересечения две, то квадратное уравнение имеет два действительных корня, если точка пересечения одна, то квадратное уравнение имеет один действительный корень, если парабола не пересекает ось 0x, то квадратное уравнение не имеет действительных корней.

На рисунке ниже изображены три упомянутых случая.

Как видно на рисунке, красная парабола пересекает ось 0x в двух точках, зелёная – в одной точке, а жёлтая парабола не имеет точек пересечения с осью 0x.

1. Если дискриминант больше нуля (), то квадратное уравнение имеет два различных действительных корня.

Они вычисляются по формулам:

и

.

Часто пишется так: .

2. Если дискриминант равен нулю (), то квадратное уравнение имеет только один действительный корень, или, что то же самое – два равных действительных корня, которые равны .

3. Если дискриминант меньше нуля (), то квадратное уравнение не имеет действительных корней, а имеет комплексные корни, но нахождение комплексных корней в этой статье рассматривать не будем. В общем случае правильным решением является констатация того, что квадратное уравнение не имеет действительных корней.

Пример 1. Определить, сколько действительных корней имеет квадратное уравнение:

.

Решение. Найдём дискриминант:

.

Дискриминант больше нуля, следовательно, квадратное уравнение имеет два действительных корня.

Путём преобразования в квадратное уравнение следует решать и дробные уравнения, в которых хотя бы одно из слагаемых – дробь, в знаменателе которой присутствует неизвестное, например, . О том, как это делается – в материале Решение дробных уравнений с преобразованием в квадратное уравнение.

Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Пример 2. Определить, сколько действительных корней имеет квадратное уравнение:

.

Решение. Найдём дискриминант:

.

Дискриминант равен нулю, следовательно, квадратное уравнение имеет один действительный корень.

Пример 3. Определить, сколько действительных корней имеет квадратное уравнение:

.

Решение. Найдём дискриминант:

.

Дискриминант меньше нуля, следовательно, квадратное уравнение не имеет действительных корней.

Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Решение полных квадратных уравнений

Находить корни квадратного уравнения требуется при решении многих задач высшей математики, например, при нахождении пределов, интегралов, исследовании функций на возрастание и убывание и других.

Пример 4. Найти корни квадратного уравнения:

.

В примере 1 нашли дискриминант этого уравнения:

,

Решение квадратного уравнения найдём по формуле для корней:

Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Пример 5. Найти корни квадратного уравнения:

.

В примере 2 нашли дискриминант этого уравнения:

.

Применим формулу корней квадратного уравнения . Отсюда , . Найденные корни квадратного уравнения равны друг другу, а это значит, что уравнение имеет единственный корень:

Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Корни приведённого квадратного уравнения

Пусть дано квадратное уравнение . Так как , то разделив обе части данного уравнения на a, получим уравнение . Полагая, что и , приходим к уравнению , в котором первый коэффициент равен 1. Такое уравнение называется приведённым.

Формула корней приведённого уравнения имеет вид:

.

Теорема Виета

Существуют формулы, связывающие корни квадратного уравнения с его коэффициентами. Они впервые были получены французским математиком Ф.Виетом.

Теорема Виета. Если квадратное уравнение ax² + bx + c = 0 имеет действительные корни, то их сумма равна – b/a, а произведение равно с/a:

Следствие. Если приведённое квадратное уравнение x² + px + q = 0 имеет действительные корни и , то

Пояснение формул: сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Следовательно, теорему Виета можно применять и для поиска корней приведённого квадратного уравнения.

Пример 6. Написать приведённое квадратное уравнение, корнями которого являются числа 1 и -3.

Иначе говоря, надо найти числа p и q такие, чтобы квадратное уравнение

имело корни и .

По формулам Виета , . Требуемое в условии задачи уравнение имеет вид

Нет времени вникать в решение? Можно заказать работу!

Решение неполных квадратных уравнений

Пример 7. Решить квадратное уравнение .

Решение. Чтобы решить данное неполное квадратное уравнение, разложим его левую часть на множители. Получим

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю: или . Решая уравнение , находим .

Следовательно, произведение обращается в нулю при и при . Поэтому числа 0 и 1/2 являются корнями неполного квадратного уравнения .

Пример 8. Решить квадратное уравнение .

Решение. Чтобы решить данное неполное квадратное уравнение, перенесём в его правую часть свободный член с противоположным знаком и разделим обе части уравнения на 3. Получим уравнение

.

Так как , то уравнение не имеет действительных корней. Следовательно, не имеет действительных корней и эквивалентное ему неполное квадратное уравнение .

Разложение квадратного трёхчлена на множители с применением корней квадратного уравнения

Если известны корни квадратного уравнения, то трёхчлен, представляющий собой левую часть уравнения, можно разложить на множители по следующей формуле:

.

Этот приём часто используется для упрощения выражений, особенно сокращения дробей.

Пример 9. Упростить выражение:

.

Решение. Числитель данной дроби можем рассматривать как квадратный трёхчлен в отношении x и разложить его на множители, предварительно найдя его корни. Найдём дискриминант квадратного уравнения:

.

Корни квадратного уравнения будут следующими:

.

Разложим квадратный многочлен на множители:

.

Упростили выражение, проще не бывает:

.

Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Пример 10. Упростить выражение:

.

Решение. И числитель, и знаменатель – квадратные трёхчлены. Значит, их можно разложить на множители, предварительно найдя корни соответствующих квадратных уравнений. Находим дискриминант первого квадратного уравнения:

.

Корни первого квадратного уравнения будут следующими:

.

Находим дискриминант второго квадратного уравнения:

.

Так как дискриминант равен нулю, второе квадратное уравнение имеет два совпадающих корня:

.

Подставим корни квадратных уравнений, разложим числитель и знаменатель на множители и получим:

.

Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Упрощать выражения путём решения квадратных уравнений требуется при решении многих задач высшей математики, например, при нахождении пределов, интегралов, исследовании функций на возрастание и убывание и других.

Разумеется, квадратного трёхчлена может может и не быть в выражении в первоначальном виде, он может быть получен в процессе предварительных преобразований выражения.

Из истории решения квадратных уравнений

Формула корней квадратного уравнения “переоткрывалась” неоднократно. Один из первых дошедших до наших дней выводов этой формулы принажлежит индийскому математику Брахмагупте (около 598 г.).

Среднеазиатский учёный аль-Хорезми (IX в.) получил эту формулу методом выделения полного квадрата с помощью геометрической иллюстрации.

Суть его рассуждений видна из рисунка ниже (он рассматривает уравнение x² + 10x = 39).

Площадь большого квадрата равна (x + 5)². Она складывается из площади x² + 10x заштрихованной фигуры, равной левой части рассматриваемого уравнения, и площади четырёх квадратов со стороной 5/2, равной 25. Получается следующее уравнение и его решение:

Различные прикладные задачи на квадратные уравнения

Пример 11. Отрезок ткани стоит 180 у.ед. Если бы ткани в отрезке было на 2,5 м больше и цена отрезка оставалась бы прежней, то цена 1 м ткани была бы на 1 у.ед. меньше. Сколько ткани в отрезке?

Решение. Примем количество ткани в отрезке за x и получим уравнение:

Приведём обе части уравнения к общему знаменателю:

Произведём дальнейшие преобразования:

Получили квадратное уравнение, которое и решим:

Ясно, что количество ткани не может быть отрицательным, поэтому в качестве ответа из двух корней квадратного уравнения подходит лишь один корень – положительный.

Ответ: в отрезке 20 м ткани.

Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Пример 12. Товар, количество которого 187,5 кг, взвешивают в одинаковых ящиках. Если в каждом ящике количество товара уменьшить на 2 кг, то следовало бы использовать на 2 ящика больше и при этом 2 кг товара остались бы невзвешенными. Сколько кг товара взвешивают в каждом ящике?

Решение. Примем за x количество товара, взвешиваемого в одном ящике. Тогда получим уравнение:

Приведём обе части уравнения к общему знаменателю, произведём дальнейшие преобразования и получим квадратное уравнение. Процесс записывается так:

Найдём дискриминант:

Найдём корни квадратного уравнения:

Количество товара не может быть отрицательным, поэтому в качестве ответа из двух корней квадратного уравнения подходит лишь положительный корень.

Ответ: в одном ящике взвешивают 12,5 кг ткани.

Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Нет времени вникать в решение? Можно заказать работу!

Другие темы в блоке “Школьная математика”

Действия со степенями и корнями Решение дробных уравнений с преобразованием в квадратное уравнение

Источник: https://function-x.ru/sq_equations.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.